Aufgabe	Lösungsweg
1	
1.1	Erstellung von f(x)
	$f(x) = ax^4 + bx^2 + c$ da Achsensymmetrie
	$f'(x) = 4ax^3 + 2bx$
	Mathematisieren der Angaben und Berechnen der Gleichungen
	x = 2; m = 0 $f'(2) = 0$ $32a + 4b = 0$
	(3 0) $f(3) = 0 81a + 9b + c = 0$
	x = 3; m = -15 $f'(3) = -15$ $108a + 6b = -15$
	Lösen des LGS zu a = -0,25; b = 2; c = 2,25
	Formulierung der Funktionsgleichung $f(x) = -0.25x^4 + 2x^2 + 2.25$
1.2	Funktionsuntersuchung
	$f(x) = -0.25x^4 + 2x^2 + 2.25$
	$f'(x) = -x^3 + 4x$
	$f''(x) = -3x^2 + 4$
	f''(x) = -6x
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	$D = R \qquad \begin{array}{c} X \to -\infty; f(X) \to -\infty \\ X \to +\infty; f(X) \to -\infty \end{array}$
	Achsensymmetrie, da nur gerade Exponenten
	S _y (0l2,25)
	$f(x) = 0$ mit Substitution $x^2 = z$ erhält man $z_1 = 9$ und $z_2 = -1$
	Resubstitution und Wurzel ziehen ergibt $x_1 = 3$ und $x_2 = -3$
	$S_{x1}(310) S_{x2}(-310)$
	f'(x) = 0
	Ausklammern von x ergibt $x_1 = 0$
	Mit Wurzel ziehen erhält man $x_2 = 2$ und $x_3 = -2$
	$f'(x) = 0 \land f''(x) \neq 0$ $f''(0) = 4 > 0 \Rightarrow T$ und $f''(2) = -8 < 0 \Rightarrow H$ sowie
	$f''(-2) = -8 < 0 \Rightarrow H$
	Einsetzen in f(x) ergibt T(0l2,25) und H_1 (2l6,25) und H_2 (-2l6,25)
	f''(x) = 0
	Wurzel ziehen ergibt $x_1 = 1,2$ und $x_2 = -1,2$
	$f''(x) = 0 \land f'''(x) \neq 0 \; ; \; f'''(1,2) = -7,2 < 0 \Rightarrow L - R - K$
	$f'''(-1,2) = 7,2 > 0 \Rightarrow R - L - K$
	Einsetzen in $f(x)$ ergibt $W_1(1,2 4,6)$ und $W_2(-1,2 4,6)$
	\wedge
	1 Einheit = 1 cm

Aufgabe	Lösungsweg
1.3	Flächenberechnung
1.0	$g(x) = 0 \Rightarrow x = -2$
	$A_1 = \int_{-2}^{0} (0.5x + 1) dx$
	$A_1 = \left[\frac{1}{4}x^2 + x\right]_0^0 = [0] - [-1] = 1FE$
	L4 J ₋₂
	0
	$A_2 = \int_0^0 (-0.25x^4 + 2x^2 + 2.25) dx$
	-2
	$A_2 = \left[-\frac{1}{20} x^5 + \frac{2}{3} x^3 + 2{,}25x \right]_{-3}^{0} = [0] - [-12{,}6] = 12{,}6FE$
	$A = A_2 - A_1 = 12,6 - 1 = 11,6FE$
	1FE = 10000m ²
	$A_{Wald} = A - A_{Fluss} = 116000 - 2000 = 114000m^2$
2	Funktionguntorguchung
2.1	Funktionsuntersuchung 1 2 4 17
	$h(x) = \frac{1}{18}x^2 - \frac{4}{9}x + \frac{17}{9}$
	h'(x) = 1 4
	$h'(x) = \frac{1}{9}x - \frac{4}{9}$
	$h''(x) = \frac{1}{9}$
	3
	h'''(x) = 0
	$D = R$ $X \to -\infty; f(X) \to +\infty$ $X \to -\infty; f(X) \to +\infty$
	$x \to +\infty$; $f(x) \to +\infty$ Keine Symmetrie, da gerade und ungerade Exponenten
	$S_{v}(01,9)$
	h(x) = 0 mit pq-Formel erhält man eine negative Wurzel => n.l.
	Keine S _x
	h'(x) = 0
	X = 4
	$h'(x) = 0 \land h''(x) \neq 0 h''(4) = 0,1 > 0 \Rightarrow T$
	Einsetzen in h(x) ergibt T(4l1)
	f''(x) = 0
	$\frac{1}{2} \neq 0$
	9
	Keine Wendepunkte
	-
	1 Einheit = 1 cm

Aufgabe	Lösungsweg
2.2	Schnittpunktberechnung und Abstand mittel Pythagoras
	g(x) = h(x)
	$0.5x + 1 = \frac{1}{18}x^2 - \frac{4}{9}x + \frac{17}{9}$
	$0.5x + 1 = \frac{1}{18}x - \frac{1}{9}x + \frac{1}{9}$
	$0 = \frac{1}{18}x^2 - \frac{17}{18}x + \frac{8}{9} : \frac{1}{18}$
	18 18 9 18
	$0 = x^2 - 17x + 16$
	pq-Formel ergibt $x_1 = 16 \notin D$ und $x_2 = 1$
	g(1) = 1,5 $S(1 1,5)$
	Strecke von Furt (S) bis Straßenkreuzung (Ursprung)
	$a^2 + b^2 = c^2$ gesuchte Strecke ist c, a und b sind x- und y-Werte
	$1^2 + 1.5^2 = c^2 \sqrt{}$
	1LE = 100m Strecke = 180 m $c = 1,8$ LE
2.3	Integralrechnung
	Fläche g(x) mit x-Achse D = $[0;1]$
	1
	$A_1 = \int_{0}^{1} (0.5x + 1) dx$
	$A_1 = \left[\frac{1}{4}x^2 + x\right]_0^1 = [1,25] - [0] = 1,25FE$
	Fläche h(x) mit x-Achse D = $\begin{bmatrix} 1;4 \end{bmatrix}$ (x = 4 Tiefpunkt der Parabel)
	$A_2 = \int_{1}^{4} \left(\frac{1}{18} x^2 - \frac{4}{9} x + \frac{17}{9} \right) dx$
	$A_{2} = \left[\frac{1}{54}x^{3} - \frac{2}{9}x^{2} + \frac{17}{9}x\right]_{1}^{4} = \left[\frac{140}{27}\right] - \left[\frac{91}{54}\right] = 3,5FE$
	$A = A_1 + A_2 = 1,25 + 3,5 = 4,75FE$ 1FE = 10000m ²
	$A = 4,75 \cdot 10000 \text{m}^2 = 47500 \text{m}^2$
3	
3.1	Cournot'scher Punkt
	p(x) = -3x + 63
	$E(x) = -3x^2 + 63x$
	G(x) = E(x) - K(x)
	$G(x) = -3x^{2} + 63x - (x^{3} - 12x^{2} + 65x + 48)$
	$G(x) = -x^3 + 9x^2 - 2x - 48$
	$G'(x) = -3x^2 + 18x - 2$ $G''(x) = -6x + 18$
	$G'(x) = 0$ $0 = -3x^2 + 18x - 2$
	Mit p-q-Formel erhält man $x_1 = 5.9$ und $x_2 = 0.1$
	$G'(x) = 0 \land G''(x) \neq 0$ $G''(5,9) = Max. und G''(0,1) = Min.$
	p(5,9) = 45,3 Der Cournot'sche Punkt liegt bei $(5,9 45,3)$.
	Bei 5,9kg muss er einen Preis von 45,30€ je kg verlangen, um den maximalen Gewinn zu machen.

Aufgabe	Lösungsweg
3.2	Stückkosten berechnen
	$k(x) = x^2 - 12x + 65x \frac{48}{x}$ k(5,9) = 37,15€
3.3	Gewinnschwelle und –grenze berechnen
	G(x) = 0
	$0 = -x^3 + 9x^2 - 2x - 48$
	Polynomdivision mit $x_1 = 3$ (GS) ergibt $0 = x^2 - 6x - 16$;
	mit p-q-Formel erhält man x₂ = -2 ∉ D _{ök} und x₃ = 8
	Ab 3kg erzielt er erst Gewinn.
3.4	Maximaler Gewinn
	$x_{Gmax} = 5.9kg$
	G(5,9) = 48,10€ maximaler Gewinn
	G(0,1) = -48,10€ aber G(10) = -168€ größter Verlust!
3.5	Da bei 10kg der Definitionsbereich ausgeschöpft ist, bei 8kg die Gewinngrenze liegt, und bei 10kg ein Verlust von 168€ gemacht wird, sollte diese Menge nicht ausgeschöpft werden.